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Direct numerical simulation is carried out to study the response of an oscillating 
cylinder in uniform flow and in the wake of an upstream cylinder. It is found that 
the response of the cylinder wake is either a periodic (lock-in) or a quasi-periodic 
(non-lock-in) state. In the lock-in state, the vortex shedding frequency equals the 
forcing frequency. In  the non-lock-in state, the shedding frequency shows a smooth 
variation with the driving frequency. For a cylinder oscillating in uniform flow, a 
lock-in diagram of different forcing amplitude is computed. However, no clear 
chaotic behaviour is detected near the lock-in boundary. For a cylinder oscillating 
in the wake of an upstream cylinder, the response state is strongly influenced by the 
distance between the two cylinders. By changing cylinder spacing, two different flow 
regimes are identified. In the ‘vortex formation regime’, found at  large spacings, the 
vortex street develops behind both the upstream and downstream cylinders. The 
strength of the naturally produced oscillation upstream of the second cylinder 
becomes important compared to the forced oscillation and dominates the flow) 
leading to a very small or even indistinguishable zone of synchronization. However, 
in the ‘vortex suppression regime’, observed at small spacings, the oncoming flow to 
the downstream cylinder becomes so weak that it hardly affects its vortex wake, and 
therefore a large zone of synchronization is obtained. The numerical results are in 
good agreement with available experimental data. 

1. Introduction 
The investigation of vibrating cylinder-vortex wake interaction is of great 

importance not only as a basic problem in fluid mechanics but also for flow-control 
problems in engineering applications. 

The response in the wake of a circular cylinder oscillating in uniform flow has been 
intensively studied experimentally. The vibrating cylinder-vortex wake system is 
known to produce many interesting effects characteristic of a nonlinear self-excited 
oscillator (Berger & Wille 1972), such as the lock-in phenomena which was first 
reported by Bishop & Hassan (1964). According to their observations, when the 
forcing frequency approaches the vortex shedding frequency, the natural Strouhal 
frequency is suppressed by the cylinder vibration frequency. This phenomena also 
occurs when the forcing frequency is a multiple or submultiple of the natural vortex 
shedding frequency. Additional experimental results on the behaviour of vortex 
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shedding in the presence of external forcing are found in, for example, Koopmann 
(1967), Berger & Wille (1972), Griffin & Ramberg (1975), Bearman (1984). The 
influence of the cylinder vibration during synchronization can be summarized as : (i) 
it increases the vortex strength; (ii) it replaces slantwise vortex shedding with 
parallel vortex shedding; (iii) it synchronizes the vortex shedding frequency to the 
forcing frequency; (iv) and finally, i t  increases the force acting on the cylinder 
(Blevins 1977). 

There has been increasing interest during the last decade in the investigation of the 
laminar wake of cylinders to reveal the origin of the discontinuity in the relation 
between the Strouhal number (non-dimensional vortex shedding frequency) and the 
Reynolds number first observed by Tritton (1959, 1971). Based on his experimental 
observations, Gaster (1969, 1971) suggested that the discontinuity was possibly 
caused by flow non-uniformity. Sreenivasan (1985) observed that as the Reynolds 
number was increased, the initial vortex shedding state with a single shedding 
frequency was replaced by a two-frequency-quasi-periodic state. This ‘ ordered ’ 
behaviour persisted until the appearance of ‘a window of chaos’ over a small range 
of Re, where the discontinuous variation of Strouhal number with Re was detected. 
Sreenivasan believed that such chaotic patterns could develop even a t  low Reynolds 
numbers, for which flow is still laminar. With regard to this question, Van Atta & 
Gharib (1987) investigated the wake of a vibrating wire and suggested that the 
‘window of chaos ’ observed by Sreenivasan was not of pure fluid-mechanical origin, 
but was in fact due to aeroelastic coupling of the vortex wake with cylinder vibration 
modes. These authors suggested that this competitive coupling between the naturally 
produced vortex wake and the forced cylinder vibration was responsible for the 
discontinuity in the Strouhal-Reynolds number relation reported by Tritton. 
Following Van Atta & Gharib’s work, Karniadakis & Triantafyllou (1989) carried 
out a two-dimensional numerical simulation. By exerting an external forcing, which 
is harmonic in time and localized in space, in the near wake of the cylinder, they 
studied the frequency selection process and the asymptotic states in the laminar 
wake of a circular cylinder and demonstrated that the possible asymptotic response 
states of a forced wake could be periodic or quasi-periodic depending on the 
combination of the amplitude and frequency of the external forcing. They also 
demonstrated that chaotic states could be created by external forcing. 

On the other hand, Williamson (1989) showed that, even in the absence of cylinder 
vibration and flow non-uniformity, a discontinuity in the St-Re relation could still 
exist due to  a three-dimensional flow mode transition (from one oblique shedding 
mode to  another oblique mode). The phenomenon of oblique shedding was found to 
be caused by end effects. Williamson observed that, by manipulating the end 
boundary conditions, parallel shedding could be produced (which can be regarded as 
a two-dimensional flow), resulting in a completely continuous St-Re curve. He further 
demonstrated that the parallel shedding Strouhal curve is universal : if one considers 
normally directed oblique shedding, one can find the same curve as the parallel 
shedding Strouhal curve. Based on the similarity of oblique shedding angles between 
his experimental data and those derived from Tritton’s measurements, Williamson 
showed that Tritton’s discontinuity was possibly caused by the breakdown of one 
oblique shedding mode to another. However, Williamson’s three-dimensionally 
originated discontinuity is found to occur a t  Re = 64, which is not very close to the 
value where Tritton found his discontinuity (Re x 90). The reason for this difference 
is not clear, though the flow non-uniformity, the turbulence level, the end conditions 
and the vibration of the cylinder may be responsible. 
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In engineering applications, flow-induced vibration is often inevitable. This can 
alter the frequency and the intensity of the forces acting on a structure as well as 
vortex wake characteristics. In this paper, we focus on the two-dimensional aspects 
of the interaction between forced cylinder vibration and its vortex wake. However 
it should be born in mind that three-dimensional effects can be important in some 
cases, e.g. the oblique vortex shedding mode transition studied by Williamson 
(1989). 

Even in the two-dimensional case, the analytical solution of such problems is very 
difficult, since the solution of such nonlinear PDEs is not currently available. 
Therefore, the numerical methods have been proposed in the last few decades. 
Besides the work of Karniadakis & Triantafyllou cited above, which emphasized the 
frequency selections, other numerical studies on various characteristics of the lock- 
in state have been undertaken. Chilukuri (1987) developed an implicit finite- 
difference scheme to investigate the vortex shedding characteristics behind a 
transversely vibrating cylinder subjected to uniform flow. The coordinate system 
was transformed to the oscillating cylinder frame, converting the uniform free- 
stream boundary conditions to oscillatory ones. His numerical results showed good 
agreement with experimental data for small vibration amplitude. The same problem 
was also treated by Anagnostopoulos (1989), who used the stream function-vorticity 
formulation. For each time step, the grid system was displaced with the cylinder 
vibration to a new location, and the corresponding new velocity field was then 
computed for the newly displaced grid system. 

Most previous investigators have emphasized the role of cylinder vibration ; 
the influence of upstream disturbances on vortex shedding characteristics has been 
overlooked. In fact, interactions among the oscillating oncoming flow, the oscillating 
cylinder and the vortex wake are extremely important and occur frequently. Serious 
instabilities have been reported in arrays of tubes in heat exchangers, power cables, 
etc. Barbi et al. (1986) showed evidence of lock-in due to harmonic perturbation of 
the freestream velocity. The question remains: what will be the combined effect of 
the cylinder vibration and the oscillation of the oncoming flow, or in more physical 
sense, what is the dynamics of an oscillating cylinder in a wake of another cylinder 1 
The investigation of such a nonlinear system is worthwhile because it can offer sig- 
nificant insight to the flow interactions and wake-cylinder vibration-wake coupling. 
Despite its importance, such a problem has not interested many investigators. 
The only documentation we can find in the literature is the experimental work of 
Tanida, Okajima & Watanabe (1973), in which the instability of two cylinders in a 
tandem configuration with downstream cylinder vibration was studied. The problem 
seems similar to that where an oscillating cylinder is placed in an harmonically 
oscillating flow ; however, the flow configurations can be significantly different. In the 
case of two cylinders in tandem, the spacing between the two cylinders strongly 
affects the intensity of the oscillatory incident flow on the downstream cylinder. 
Moreover, there is a critical spacing separating two different flow configurations : the 
‘vortex suppression regime’ and the ‘vortex formation regime’ (Ishigai et al. 1972; 
Zdravkovich 1977; Li 1989; Li el al. 1991). In the ‘vortex suppression regime’, two 
attached, almost symmetrical vortices are formed between the two cylinders, only 
very weak or even no oscillations can be detected behind the cylinders, at  least in the 
near wake. In the ‘vortex formation regime’, vortices are shed normally from the 
upstream cylinder, creating oscillations in the flow upstream of the second cylinder. 
The changes in lock-in characteristics caused by the changes in flow configurations 
will be discussed in detail in $4. 
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The present work is a direct numerical simulation to study the response state of 
a circular cylinder oscillating in uniform flow and in the wake of an upstream 
cylinder. An exact formulation would account for the time displacement of the mesh 
system due to the oscillation of the cylinder. However, to simplify the analysis and 
the programming, as well as to save computation time we consider, instead of a really 
oscillating cylinder, a quiescent cylinder with a periodic parietal velocity (aspiration 
or transpiration through the wall). An investigation of the problem by taking into 
consideration the moving mesh system is underway; the first results have 
demonstrated the same qualitative behaviour as that  to be described in the present 
paper. This further justifies the use of a periodic parietal velocity as a forcing 
mechanism. 

The organization of the paper is as follows: $ 2 ,  the numerical formulation 
employed is described; in $$3 and 4, the numerical results for a cylinder oscillating 
in uniform flow and in the wake of an upstream cylinder, respectively, are presented 
and compared with experimental data;  and finally conclusions are drawn in $5. 

2. Numerical formulation 
We consider the flow to be laminar, incompressible and two-dimensional. The 

governing momentum equation and equation of mass conservation in dimensionless 
forms are 

au 1 
at Re 
-+u.vu = - vp+-vzu 

8.u = 0, (2) 
where u is the velocity vector with components u and v in the x -  and y-directions, 
respectively, Re = U ,  D / v  is the Reynolds number, with U ,  the free-stream velocity, 
D the cylinder diameter and v the kinematic viscosity of the fluid. 

The computational domain and boundary conditions for the two-cylinder model 
are depicted in figure 1.  The boundary conditions for inlet, upper and lower 
boundaries are: u = 1, v = 0, whereas natural boundary conditions: riinj = 0 are 
chosen for the outflow boundary, with 

The influence of the outflow boundary on vortex shedding characteristics is 
discussed in the benchmark solution of Engelman & Jamnia (1990). It was found 
that even for a distance from the cylinder centre to the outflow boundary as small 
as 40, the discrepancy with the benchmark solution was less than 15%. This shows 
that the natural outlet boundary condition is well suited to vortex shedding 
problems. In  our simulation, this distance is 2 0 0  (comparable to 2 5 0  used in the 
benchmark solution), so the influence of the outflow boundary is negligible. 

are imposed on the cylinder surface 
whereas for oscillating cylinder, the following boundary conditions are adopted : 

For the fixed cylinder, u = 0, and v = 0 

u = 0, v ( t )  = A ,  sin (2xjCt) ,  (4) 

where f, is the forcing frequency and A,, the parietal velocity amplitude. For a 
vibrating impervious cylinder, A ,  is related to  the displacement amplitude A by the 
relation: A,  = 2 n f J .  In our case, A is considered as a fictitious displacement 
amplitude. 
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FIQURE 2. A typical mesh for the two-cylinder model (584 elements and 2479 nodes). 

A complete description of the numerical technique employed can be found in our 
previous studies on vortex shedding from cylinders (Li 1989; Li et al. 1991). Only a 
brief overview of the approach employed in the present paper will be presented here. 
The time-dependent NavierStokes equations are solved in their primitive variable 
form. Nine-node quadrilateral elements are used with a biquadratic Lagrange 
interpolation function for the velocities and a bilinear interpolation function for the 
pressure. The transient time integration is performed using the second-order, non- 
dissipative and completely stable Crank-Nicolson time integrator. The nonlinear 
algebraic system was solved using Newton-Raphson iteration. In addition to the 
primary velocity and pressure variables, we also calculate the drag and lift forces 
exerted on the cylinder from the following formulae : 

C ,  = 2f { - p d x + L [ z * d x + p + E ) d y ] }  Re ax ay ax 
cylinder 

A variable finite-element grid is used with finer mesh close to the cylinder and 
coarser elements further downstream. An example of the two-cylinder model is given 
in figure 2. The program has been tested for fixed cylinders as in our previous studies 
(Li 1989; Li et al. 1991). In order to demonstrate the consistency of our solutions in 
a mesh refinement sense for both a fixed and an oscillatory cylinder, computations 
are also performed on a refined mesh (2598 nodes) which is approximately two times 
finer than the mesh usually used (1394 nodes). A comparison is made for the main 
flow characteristics with some existing experimental and numerical data for the fixed 
cylinder case, including the benchmark solution of Engelman & Jamnia (1990) 
(14000 nodes) (see table 1).  Generally good agreement is observed except for an 
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Strouhal Average drag Lift coefficient 
number coefficient peak-to-peak 

Mesh used in present work 0.166 1.256 0.637 

Finer mesh (2598 nodes) 0.176 1.333 0.685 
Benchmark solution (14000 nodes) 0.173 1.41 1 0.7267 

Braza et a2. (1986) 0.16 1.3 0.6 

(1394 nodes) 

(Engelman & Jamnia (1990)) 

(numerical simulation) 
Tritton (1959) (experiments) 0.15-0.18 1.26-1.32 - 

TABLE 1 .  Comparison of main flow characteristics with some experimental and numerical results 
(Re = 100) 

underestimation of the lift coefficient. For the oscillatory cylinder case, no difference 
is found in shedding frequency; however, differences of 3 and 5 %  are observed in 
drag and lift coefficients, respectively. 

In  order to study the interactions between cylinder vibration and its periodic 
wake, the solutions of vortex shedding from fixed cylinders were first computed until 
the periodic vortex street was well established. This solution is then applied as initial 
condition for our forced vortex wake simulations. The amplitude of oscillation is kept 
constant whereas the forcing frequency is varied in order to localize the lock-in 
boundary. The response states in the cylinder wake are followed in time and the 
characteristic vortex shedding frequency is determined using power spectra and 
phase diagrams. In  the case of two cylinders in tandem, by changing the cylinder 
spacings, different intensities of oscillation of the incident flow on the downstream 
cylinder can be introduced ; the interactions among the cylinder vibration, its 
upstream oscillation and the downstream vortex wake are then studied. The 
computations were performed on an IBM 3090-VF computer, the average CPU time 
is about 30.7 s per time step for two-cylinder calculations ; and on a Intel iPSC/S60 
computer, which is about 79.7 s per time step on a single processor (vectorizer being 
not yet available). 

3. Results for one cylinder oscillating transversely in uniform flow 
In  this section, the response of the cylinder wake to cylinder oscillation is 

investigated in the case of uniform upstream flow. In the following, f, is used to 
indicate cylinder oscillation frequency, f, the vortex shedding frequency in the 
presence of cylinder oscillation, and fns the natural shedding frequency. 

3.1. Lock-in and non-lock-in. behaviour 
By varying the forcing frequency, both a lock-in and a non-lock-in state have been 
observed in our numerical simulations. 

When the frequency of external forcing applied on the cylinder is sufficiently close 
to the vortex shedding frequency, the vortex shedding frequency rapidly changes 
towards the driving frequency, This state is denoted the lock-in state, in which the 
power spectrum shows a dominant peak at  the driving frequency f, (figure 3). The 
drag and lift forces, as well as the longitudinal and the transverse velocities are 
periodic functions of time with constant amplitudes. The variation of drag and lift 
coefficients over time is plotted in figure 4. It is obvious that the effect of 



An oscillating cylinder in uniform $ow and in a wake 463 
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FIGURE 3. Power spectrum of the lock-in state (Re = 100, A,  = 0.05 and f, = l.lfns), with 
dominant frequency at the forcing frequency f,. 
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FIGURE 4. Time history of drag (curve a) and lift (curve b )  coefficients in lock-in state, same 
conditions as in figure 3. 
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‘synchronization ’ or ‘ lock-in ’ is to stabilize the vortex wake. The periodicity of the 
vortex wake is also apparent in phase diagrams. This method has proved useful in 
analysing and identifying different response states in the wake of the cylinder 
(Koopmann 1967 ; Karniadakis & Triantafyllou 1989). To obtain phase diagrams, we 
chose two arbitrary independent variables of the system : longitudinal and transverse 
velocity components at  the point x = 0.7828, y = 0.7828 in the near wake. A single 
loop is observed in a Lissajous figure as the lock-in state is reached (figure 5), showing 
a completely periodic trajectory representing a periodic vortex wake. 

Outside the lock-in region, a quasi-periodic response state is obtained. Near the 
lock-in boundary, nonlinear interactions between the vortex street and the forced 
vibration become preponderant in determining the resulting state of the cylinder 
wake. We detected both forcing and shedding frequencies in the power spectra, but 
the latter is not strictly equal to the natural shedding frequency, it has drifted 
towards the forcing frequency (figure 6). Similar variation was observed experi- 
mentally by Barbi et al. (1986) in the wake of a stationary cylinder placed in 
longitudinally oscillating flow. We refer to this response state as an intermediate state 
(see also figure 10). The relative strengths of the frequencies depend on the 
comparative importance of the waves generated by the vortex street and by the 
oscillation of the cylinder. Nonlinear interactions of the two waves result in 
composite wave forms of both the longitudinal and transverse velocities. The phase 
diagram is shown in figure 7 ;  an aperiodic trajectory is found. For drag and lift 
forces, composite wave forms due to nonlinear interactions have also been observed. 
The time history of drag and lift coefficients at f, = l.lSf,, is plotted in figure 8. 
Similar wave forms have been experimentally observed by Bishop & Hassan (1964) 
for the same problem of a mechanically vibrated cylinder outside its synchronization 
range. 

When the forcing frequency is far from the natural shedding frequency, a typical 
non-lock-in state is observed. The power spectrum exhibits two peaks, one at the 
shedding frequency and the other at  the forcing frequency. The two frequencies are 
also seen in the phase diagram (figure 9). 

In the intermediate region, also referred as the ‘receptivity region’ in some 
literature, chaotic behaviour in the wake may develop as described by Karniadakis 
& Triantafyllou (1989). This chaotic behaviour is characterized by a sudden 
broadening of the spectrum and loss of periodicity in time signals. However, no clear 
chaotic behaviour was detected in our simulations. This may be attributed to several 
factors. First, whether a chaotic state really exists under the present forcing 
mechanism is not clear; different forcings may lead to different responses. Second, the 
precise identification of the chaotic response requires much longer time signals (at 
least for 15&200 stabilized vortex shedding periods) in order to obtain the reliable 
power spectra. Also, the reconstruction of time signals will be inadequate to identify 
the chaotic state, since the chaotic state is never repeatable ; the reconstruction will 
introduce artificial frequencies indistinguishable from the real signal frequencies. 
Therefore it is computationally expensive to obtain such long time signals, and we 
did only a few such computations and did not capture apparent chaotic responses. 
On the other hand as, according to Karniadakis & Triantafyllou, the chaotic state can 
only be observed in a very narrow region, it is difficult to locate precisely in this 
region and in our simulation we might overlook it. Nevertheless, this is an interesting 
problem and worth further investigation since it can shed light on whether in the 
two-dimensional case, a general forcing mechanism on a cylinder or in a wake can 
lead to a chaotic response. 
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FIQURE 7 .  Phase diagram of non-lock-in state (intermediate zone), the velocities are measured 
at the near-wake point x = 0.7828, y = 0.7828, other conditions same as in figure 6. 

L 

1.4 - 

1.2 - 

yI 1.0 - 
.- 5 
4 0.8 - 

c 

0 

8 

9 

0.6 - 
-a 

DD 0.4 - 
6 

0.2 - 

0 -  

-0.2 - 

1 

0 50 100 150 200 250 300 350 400 450 
Time 

FIGURE 8. Time history of drag (curve a) and lift (curve b )  coefficients in non-lock-in state, 
same conditions as in figure 6. 



An oscillating cylinder in uniform $ow and in a wake 467 

FIGURE 9. Phase diagram for a pure non-lock-in state, velocities are taken at the point x = 0.7828, 
y = 0.7828 (Re = 100, A,  = 0.04 and f, = 1.9fn,). Quasi-periodic characteristics. 
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FIGURE 1 1. Mean drag coefficient and maximum lift coefficient versus reduced driving frequency 
f,/f,,, same conditions as in figure 10: 0 ,  mean drag coefficient; 0, maximum lift coefficient. 

3.2. Variation of the shedding frequency 
We have shown in the previous section that within the intermediate zone, the vortex 
shedding frequency is not exactly the Strouhal frequency of a stationary cylinder ; it 
drifts towards the forcing frequency. The variation of reduced shedding frequency 
f,/fn, as a function of forcing frequency for a constant velocity vibration amplitude 
(AJD = 0.05) is plotted in figure 10. The shedding frequency is equal to the natural 
shedding frequency only when the forcing frequency is well below or above the 
boundary separating the lock-in and the non-lock-in states. I n  the intermediate non- 
lock-in range, the measured shedding frequency varies smoothly with the forcing 
frequency before being locked on to i t ;  i.e., iff, < fns, the shedding frequency f, is 
found to be less than fns; conversely, iff, > fns, fs is greater than fns. Synchronization 
is more likely to occur when the forcing frequency approaches the Strouhal frequency 
from below than from above. The same behaviour can also be found in Koopmann’s 
(1967) experimental data. 

3.3. Amplijcation of drag and lift coeficients 
Not only the phase diagram shows abrupt changes of trajectory when lock-in occurs; 
the forces exerted on the cylinder do as well. Based on our results, the variations of 
drag and lift coefficients with respect to reduced frequency f,/fn, are plotted in figure 
11. Both coefficients are significantly amplified in the lock-in range. 

3.4. Lock-in diagram 
Experimental studies have shown that the range of synchronization depends on 
amplitude and Reynolds number (e.g. Bishop & Hassan 1964 ; Koopmann 1967). An 
increase in amplitude or a decrease in Reynolds number leads to  an increase in the 
lock-in range. Quantitative determination of the exact range of synchronization as 
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FIGURE 12. Lock-in diagram for Re = 100: 0,  Koopman’s experimental data;  0 ,  present 
numerical simulation. 

functions of both Reynolds number and vibration amplitude is extremely time 
consuming, requiring a large amount of computation. Therefore, only the influence of 
amplitude was explored in the present study. The boundary frequencies are 
determined by power spectra and phase diagram analysis. If the dominant frequency 
equals the forcing frequency and its corresponding Lissajous figure exhibits a one- 
loop trajectory, we say that the lock-in state has been reached. By continuously 
changing the forcing frequency, boundary frequencies at different vibration 
amplitudes can be readily derived. 

Based on our numerical results, a quantitative diagram of the lock-in range is 
drawn in figure 12 for Re = 100. Compared with Koopmann’a experimental data (for 
a virtually vibrating cylinder), our prediction has the same trend of variation, but 
overestimates the range of synchronization. This is possibly because we used a 
parietal forcing mechanism instead of real cylinder oscillation. In  addition, this 
difference can also be attributed to the possible tridimensional effect, and/or 
aeroelastic mode selection effect existing in experiments, not included in the present 
two-dimensional model. 

4. Results for a cylinder oscillating in the wake of an upstream cylinder 
In $3, we discussed the response modes of a circular cylinder oscillating in uniform 

flows. However, upstream wake-structure-downstream wake interactions are often 
observed in arrays of tubes in heat exchangers, in power lines and in conductor 
bundles. Obviously, such a system is much more complex than that of a single 
cylinder, since its response state depends not only on the forced vibration of the 
cylinder but also on the non-uniformity of the oncoming flow as well as the 
unsteadiness of its own wake. In this section, the response states of an oscillating 
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FIGURE 13. Mean drag coefficient of the downstream cylinder versus cylinder spacings of two 
cylinder in tandem (cylinders are fixed). We notice two distinct flow regimes : vortex suppression 
regime (VS regime) and the vortex formation regime (VF regime). 

cylinder in the wake of an upstream cylinder are discussed. The two cylinders are in 
a tandem arrangement (with the upstream cylinder a t  rest), they have the same 
radius D and are separated by the distance L.  The parameter A,/27cf, is kept constant 
(corresponding to fictitious displacement amplitude A = 0.14) in order to compare 
with the existing experimental data. Computations are performed for three different 
spacings (LID = 3, 4 and 6). 

4.1. Different $ow configurations at different spacings 
The complexity of flow interference for two cylinders in tandem has been 
demonstrated in previous investigations for fixed cylinders. Here we recall briefly the 
vortex shedding characteristics in the absence of external forcing (Zdravkovich 
1977; Li 1989; Li et al. 1991). Basically, there are two different flow patterns. At small 
cylinder spacing, because of the presence of downstream cylinder the shear layers 
separating from the upstream cylinder reattach to the downstream cylinder. As a 
consequence, the formation of a vortex street between the cylinders is inhibited. We 
refer to  this regime as the ‘vortex suppression regime’ (VS regime). In  this flow 
configuration, the oncoming flow to  the downstream cylinder is very weak and leads 
to an equally weak vortex street behind the downstream cylinder. In some cases, 
there is even no vortex shedding occurring (at least in the near wake). But it is 
possible that the formation of the classic BQnard-von-Karman vortex street occur 
further downstream, outside the computational region ; however, there are no 
available experimental observations. Conversely, a t  large spacings, the vortex street 
behind the upstream cylinder has sufficient room to develop. The oncoming flow 
becomes strong both in transverse oscillation and in intensity, leading to an even 
stronger vortex street behind the downstream cylinder. We refer to  this regime as the 
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FIQURE 14. The averaged pressure distribution (normalized by the stagnant pressure of the 
upstream cylinder) around the downstream cylinder for the two different flow regimes. VF regime : 
0,  present numerical simulation (LID = 6, Re = 80);  x , Ishigai et aL’s experiments (LID = 5, 
Re = 3900). VS regime: 0 ,  present work (LID = 3, Re = 80); +, Ishigai et aZ.’s experiments 
(LID = 3, Re = 3900). 
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‘vortex formation regime’ (VF regime). Between the two regimes, there is no distinct 
transition regime. The abrupt change from one flow pattern to the other is clearly 
demonstrated in figure 13, showing a sudden jump (at LID x 3.7) in the drag 
coefficient of the downstream cylinder as a function of cylinder spacing : two distinct 
zones are easily identified. The two different flow regimes can also be distinguished 
by computing or measuring the time-averaged circumferential pressure distribution 
on the downstream cylinder. I n  the VF regime, there is only one peak in the pressure 
distribution plot (at 8 = 0, see figure 14), corresponding to the front stagnant point. 
This is similar to the circumferential pressure curve of the upstream cylinder, 
indicating that flow structures are similar for both cylinders. However, in the VS 
regime, the pressure distribution on the downstream cylinder is quite different from 
that on the upstream cylinder; the former has two peaks related to  the two 
reattachment points of the upstream shear layers (at 8 = 70 and 290 respectively, 
figure 14). This reattachment prevents the formation of a vortex street behind the 
upstream cylinder and, makes the two-cylinder system a streamline-like body which 
discourages the vortex formation and weakens the vortex shedding strength behind 
the downstream cylinder. The comparison between our numerical results and Ishigai 
et al.’s experimental data (figure 14) shows qualitatively similar variations. The large 
Reynolds number difference (Re = 80 in the numerical simulation and Re = 3900 in 
the experiment) does not affect the pressure distribution characteristics much, which 
implies that  the flow configuration (and thus the flow regime) is the determinating 
factor of the problem. 
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FIGURE 15. Reduced shedding frequenoyf,/f,, of the downstream cylinder as a function of reduced 
driving frequenoefJf,,, for different spacings : L / D  = 3 (e), 4 (0) and 0 ( + ), A = 0.14 and Re = 80. 
The natural shedding frequencies at  three spacings are different, f,, = 0.1198 for LID = 3; 
f,,, =5 0.1440 for LID = 4;  and f,. = 0.1490 for LID = 0. 

Selfn. 

Spaoing between Lock-in lone 
the cylinders 

LID Tanida et al. (1973) Present work 

3 0.075-0.180 0,074.183 
4 0.075-0.100 0.133-0.147 
5 (Tanida et al,) No clear lock-in No clear look-in 
0 (present work) is detected is detected 

TABLE 2. Comparison of the lock-in range with Tanida et al.'s data for a oircular cylinder 
oscillating in the wake of another cylinder (Re = 80, A = 0.14) 

4.2. The effect8 of oncoming $ow oscillation on the response states of the oscil latiq 
cylinder wake 

Now let us consider the case where the downstream cylinder i s  forced to oscillate 
transversely. When the cylinder spacing is small, both the upstream cylinder wake 
and the downstream one are very weak, the finite-amplitude oscillation of parietal 
velocity of the second oylinder becomes comparatively important, and the vortex 
shedding behind the second cylinder is more apt to synchronize with the driving 
frequency sinoe its oncoming flow is too weak to  affect its response state. In the 
opposite case, i.e. when the spacing is large, because of the establishment o f &  vortex 
street behind the upstream cylinder, the oscillation of downstream cylinder's 
oncoming flow becomes fairly strong compared to  the cylinder vibration itself, and 
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FIQURE 16. Velocity fields of two cylinders in a tandem arrangement, downstream cylinder 
oscillating transversely, upstream cylinder fixed at Re = 80. (a) for LID = 3, lock-in state, the 
vortex wakes behind both of the cylinders are quite weak. Conversely, for (a) LID = 4, non-lock- 
in state, the development of periodic vortex streets is recovered. 
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FIGURE 17. Time signals of the drag coefficients at LID = 4, f, = l.lfn,, A = 0.14 and Re = 80: 
(a) upstream cylinder ; (b) downstream cylinder. 

it completely dominates the flow and controls the vortex shedding from the 
downstream cylinder. The farther downstream the cylinder is placed, the stronger is 
its oncoming flow and the more difficult it  is for synchronization with the cylinder 
vibration to take place, except for when the driving frequency is very close to  the 
shedding frequency and the driving forces are sufficiently strong. 

These arguments are completely confirmed by our numerical results. The lock-in 
diagram at different spacings is displayed in figure 15. A considerably larger lock-in 
range is detected in the VS regime (LID = 3) but a rather small or even indis- 
tinguishable lock-in range is found in the VF regime for LID = 4 and 6, respectively. 
A comparison between our numerical results and Tanida et al.'s experimental data is 
given in table 2. Good agreement is obtained for the lock-in range except for the 
critical spacing value. Tanida et al. reported that the sudden change in flow pattern 
occurred at LID = 5 ,  while in our simulation, this value is 3.7. 

Flow fields characteristic of the two flow regimes are shown in figure 16. I n  the VS 
regime, the upstream cylinder wake is almost stagnant, containing two recirculation 
regions attached to the downstream cylinder surface. The oscillation of the 
downstream cylinder wake is fairly weak. However, in the VF regime, vortices are 
shed periodically from both upstream and downstream cylinders. 

The nonlinear interactions among the oncoming flow) cylinder vibration and its 
vortex wake are apparently seen in time histories of drag and lift coefficients plotted 
in figures 17 and 18, showing similar characteristics to  those we have observed in the 
single oscillating cylinder case. Not only does the downstream cylinder exhibits 
combined wave forms but so does the upstream cylinder. This indicates that the 
forcing wave is transferred in both the upstream and downstream directions. Though 
at  large spacings the forcing wave is negligible compared to  the oncoming wave, it 
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FIQURE 18. Time evolution of lift coefficients, same conditions as figure 17 : (a) upstream 
cylinder; ( b )  downstream cylinder. 
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FIGURE 19. Maximum lift coefficients as a function of the reduced driving frequency f,/f,,,, 
for LID = 4, A = 0.14 and Re = 80: 0,  upstream cylinder; 0 ,  downstream cylinder. 
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FIGURE 20. Mean drag coefficients versus reduced driving frequency f, Ifns, same conditions as in 
figure 19 : 0,  upstream cylinder ; , downstream cylinder. 

can still make its presence felt through nonlinear effects. The downstream cylinder 
has lower mean drag but greater lift due to the influence of the upstream cylinder 
wake. These interactions are more pronounced for small spacings. I n  the lock-in 
state, the upstream cylinder wake is also synchronized to the driving frequency. 
Another aspect of this nonlinear effect is to increase the lift force on the upstream 
cylinder (figure 19). However, little influence is found on the drag force (figure 20). 
For the downstream cylinder, both the drag and lift coefficients are greatly amplified 
in the lock-in region, showing the presence of a stronger wake compared to our single- 
cylinder observations. 

We have demonstrated in the above results that, in the case of two cylinders in 
tandem, the response state of the wake is largely dominated by the flow configuration. 
Though this study deals with a transversely vibrating cylinder case, it can be 
predicted that when the downstream cylinder is forced to oscillate in the flow 
direction, similar characteristics of the response state will be found, except that in 
this case the principal lock-in region will be around 2fns instead offns (since it is the 
longitudinal fluctuation component in the upstream cylinder wake that will be 
responsible for synchronization). In  the general case, where the downstream cylinder 
is allowed to oscillate in an arbitrary direction, lock-in around f,, and 2fns will 
coexist. How the two lock-in ranges vary with the oscillation angle, whether a 
common lock-in can be formed, and what is the influence of intercylinder spacing, 
etc. are interesting questions. This problem is currently under investigation and we 
hope that we will be able to answer these questions. 
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5. Conclusion 
The two-dimensional coupling system containing a vibrating cylinder and its 

oscillatory wake has been numerically investigated in this study. The response states 
of one circular cylinder oscillating in uniform flow or in the wake of an upstream 
cylinder are classified as a lock-in state and a non-lock-in state, functions of both 
forcing frequency and excitation amplitude. 

For given amplitude, the response modes of the cylinder wake can be either 
periodic or quasi-periodic. In  the lock-in state, only the periodic mode is observed in 
the wake where the vortex shedding is controlled by the external forcing on the 
cylinder. In the non-lock-in state, quasi-periodic modes are identified, the forced 
oscillation of the cylinder and that of its own wake become comparatively important 
and, therefore, the two modes coexist in the wake, showing composite wave forms in 
time history of drag, lift and velocity variation and two distinct peaks as well as their 
harmonics in power spectra. The chaotic state found in the numerical simulations of 
Karniadakis & Triantafyllou was not observed in the present study. However, the 
forcing mechanism is different in our case, therefore whether a chaotic state can be 
found under such forcing condition is not certain. Also, the region in which a chaotic 
state is observed in Karniadakis & Triantafyllou’s simulation is very narrow, and we 
made only a few calculations long enough to distinguish the chaotic state ; thus the 
forcing frequencies we used were possibly not located inside the chaotic zone. In the 
intermediate zone, just outside the lock-in region, the shedding frequency shifted 
towards the driving frequency. The width of the lock-in region is amplitude 
dependent : the bigger the forcing amplitude is, the larger the lock-in region becomes. 
The comparison with the experimental results of Koopmann showed qualitatively 
good agreement. 

The response of a circular cylinder oscillating in the wake of an upstream is 
strongly influenced by the oscillation of its oncoming flow. This is in fact caused by 
the abrupt change of flow regimes. It is found that in the vortex suppression regime, 
the oncoming flow is weak, thus the synchronization of the cylinder wake with the 
forcing frequency is more likely to occur and a large lock-in zone is obtained. On the 
other hand, in the vortex formation regime, the intensity of the driving force is so 
weak compared with that of the oncoming oscillatory flow that the synchronization 
can hardly occur. These results agree well with Tanida et al.’s experimental data. 

We would like to thank Professor R. L. Sani of the University of Colorado for 
helpful discussions. Most of the computations were performed on IBM 3090-6OOVF 
computer of CNUSC and Intel iPSC/S60 of IMFM. 
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